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The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both
core computing and human-computer interaction, and to use the knowledge so gained to support the
Company’s corporate objectives. We believe this is best accomplished through interconnected pur-
suits in technology creation, advanced systems engineering, and business development. We are ac-
tively investigating scalable computing; mobile computing; vision-based human and scene sensing;
speech interaction; computer-animated synthetic persona; intelligent information appliances; and
the capture, coding, storage, indexing, retrieval, decoding, and rendering of multimedia data. We
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research staff. It is here that challenging research problems are uncovered (through discussions with
customers, through interactions with others in the Corporation, through other professional interac-
tions, through reading, and the like) or that new ideas are born. For any such problem or idea,
this phase culminates in the nucleation of a project team around a well articulated central research
question and the outlining of a research plan.

Focus: Once a team is formed, we aggressively pursue the creation of new technology based on
the plan. This may involve direct collaboration with other technical professionals inside and outside
the Corporation. This phase culminates in the demonstrable creation of new technology which may
take any of a number of forms - a journal article, a technical talk, a working prototype, a patent
application, or some combination of these. The research team is typically augmented with other
resident professionals—engineering and business development—who work as integral members of
the core team to prepare preliminary plans for how best to leverage this new knowledge, either
through internal transfer of technology or through other means.
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participating in the larger technical community—through the publication of refereed journal articles
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Abstract

Stampede is a programming system for emerging scalable applications on clusters.
The goal is to simplify the programming of applications that are interactive (often using
vision and speech), that have highly dynamic computation structures, and that must run
on platforms consisting of a mix of front-end machines and high-performance back-
end servers with a variety of processors and interconnects. We approach this goal by
retaining, as far as possible, the well-known POSIX threads model currently in use on
SMPs.

Stampede offers cluster-wide threads with optional loose temporal synchrony, and
consistent distributed shared objects. A higher-level sharing/ communication mech-
anism calledSpace-Time Memory, with automatic garbage collection, is particularly
suited to the complex buffer management that arises in real-time analysis hierarchies
based on video and audio input. In this paper, we describe an example of our tar-
get class of applications, and describe features of Stampede that support cluster-based
implementations of such applications.
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1 Introduction

There is an emerging class of applications that are computationally very demanding,
but which have many features different from the scientific/ engineering applications
that have traditionally driven research in parallel processing. An example of this class
is a future “Smart Kiosk” for public spaces [14, 11]. It is computationally demanding
because it employs sophisticated vision, speech and learning algorithms to track people
in front of the kiosk, to recognize them, to gauge facial expressions, gaze and gestures,
and to understand their queries. The kiosk’s responses may involve sophisticated 3-d
graphics, animation and synthesized speech. Being interactive, it must perform these
recognition tasks and generate and render responses at sufficient speed to hold up a con-
vincing “conversation”. The structure and demands of the computation are dynamic,
depending on the current state of the interaction, if any. Such applications are often
based on codes originally written in C. If they have been parallelized, it is often for an
explicitly parallel SMP model such as POSIX threads.

The computing platform for a kiosk, or for multiple kiosks scattered throughout an
airport or railway station, can be quite heterogeneous. The kiosks may contain front-
end computers for low-level vision, speech and rendering tasks, while sharing one or
more back-end servers for more compute power, for databases, for high-speed Internet
access, for maintenance,etc. These computers may have different processor archi-
tectures and operating systems, different numbers of processors, and interconnection
networks of uneven capability.

There is a significant programming difficulty for this application and platform sce-
nario. The dynamic structure and complex sharing patterns of the application by them-
selves make it difficult to use the message-passing programming model (such as MPI).
The dynamic application structure, together with the heterogeneity of the platform
makes it infeasible to use a flat/ transparent shared memory programming model.

Stampede is our solution to this programming problem. We refer to the heteroge-
neous platforms described above as “clusters”. Stampede offers cluster-wide threads
with optional loose temporal synchrony, and consistent distributed shared objects. A
higher-level sharing/ communication mechanism calledSpace-Time Memory, with au-
tomatic garbage collection, is particularly suited to the complex buffer management
that arises in interactive applications with analysis hierarchies based on video and au-
dio input [12]. One of our general design philosophies is to retain, as far as possible,
the traditional POSIX threads paradigm for parallel processing on a single SMP.

In this paper, we describe the Smart Kiosk application in more detail, we describe
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the features of Stampede that make it suitable for such applications on heterogeneous
platforms, and conclude with a description of the current status and plans (we have
built a prototype and have begun to run the vision component of the Smart Kiosk on
it).

2 The Smart Kiosk: an example target application

The goal of CRL’s Smart Kiosk project [3] is to develop a kiosk for public spaces– such
as a store, museum, or airport– that interacts with people in a natural, intuitive fash-
ion. A Smart Kiosk may contain a variety of input and output devices: video cameras,
microphones, loudspeakers, touch screens, infrared and ultrasonic sensors,etc. Two
or more cameras may be used to produce stereo images of the scene before the kiosk.
Microphone arrays accept stereo speech input from customers. Computer vision tech-
niques are used to track, identify and recognize one or more customers in the scene.
The kiosk may initiate and conduct conversations with customers. Recognition of cus-
tomer gestures and speech may be used for customer input. Synthetic emotive speaking
faces and sophisticated graphics, in addition to Web-based information displays, may
be used for the kiosk’s responses.

We believe that the Smart Kiosk has features that are typical of many emerging scal-
able applications, including robots, smart vehicles, and interactive animation. These
applications all have advanced input/ output modes (such as computer vision), very
computationally demanding components with dynamic structure, and real-time con-
straints because they interact with the real world.

Figure 1 shows the software architecture of a Smart Kiosk. The input analysis
hierarchy attempts to understand the environment immediately in front of the kiosk.
At the lowest level, sensors provide regularly-paced streams of data, such as images
at 30 frames per second from a camera. In the quiescent state, a blob tracker does
simple repetitive image-differencing to detect activity in the field of view. When such
an activity is detected, a color tracker can be initiated that checks the color histogram
of the interesting region of the image, to refine the hypothesis that an interesting object
(i.e., a human) is in view. If successful, this in turn can invoke higher-level analyzers to
detect faces, human (articulated) bodies,etc. Still higher-level analyzers look for gaze,
gestures, and so on. Similar hierarchies can exist for audio and other input modalities,
and these heirarchies can merge as multiple modalities are combined to further refine
the understanding of the environment.

The parallel structure of this application is highly dynamic. The environment in
front of the kiosk (number of customers, and their relative position) and the state of its
conversation with the customers affect which threads are running, their relative com-
putational demands, and their relative priorities (e.g., threads that are currently part of
a conversation with a customer are more important than threads searching the back-
ground for more customers).

A major problem in implementing this application is “buffer management”. Even
though the lowest levels of the analysis hierarchy produce regular streams of data items,
four things contribute to complexity in buffer management as we move up to higher
levels:



3

stereo

multi-mode

camera/
digitizer

blob

color

face

gesture
articulated
body

Trackers gaze

microphone
array

Speech recognition

touch screen

Input recognition hierarchy Outputs

gaze

expression

synthetic
face

synthetic
speech

information
displays

Control

camera/
digitizer

blob

color

face

gesture
articulated
body

Trackers gaze

Figure 1: Software architecture of the Smart Kiosk

� The datasets become temporally sparser and sparser, because they correspond
to higher- and higher-level hypotheses of interesting events. For exampe, the
lowest-level event may be: “a new camera frame has been captured”, whereas
a higher-level event may be: “John has just pointed at the bottom-left of the
screen”. Nevertheless, we need to keep track of the “time of the hypothesis”
because of the interactive nature of the application.

� Threads may not access their input datasets in a strict stream-like manner. In
the interests of conducting a convincing real-time conversation with a human a
thread may prefer to receive the “latest” input item available, skipping earlier
items. The conversation may even result in cancelling activities initiated earlier,
so that they no longer need their input data items.

� Datasets from different sources need to be combined, correlating them tempo-
rally. For example, stereo vision combines data from two or more cameras,
and stereo audio combines data from two or more microphones. Higher-level
hypotheses may be generated multi-modally,i.e., by combining vision, audio,
gestures and touch-screen inputs.

� Newly created threads may have to re-analyze earlier data. For example, when
a thread hypothesizes human presence, this may create a new thread that runs
a more sophisticated articulated-body or face-recognition algorithm on the re-
gion of interest, beginning again with the original camera images that led to this
hypothesis.

These algorithmic features bring up two requirements. First, data items must be mean-
ingfully associated with time and, second, there must be some discipline of time, in
order to allow reclamation of storage for data items (garbage collection).
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Even a single kiosk is computationally demanding (vision, speech, graphics) and
scalable (tracking multiple customers and conducting multiple conversations); in addi-
tion, multiple kiosks may be installed in a facility, sharing back-end servers for addi-
tional compute power, models (color histograms, face models, articulated body models,
...), databases, high-speed Internet access,etc..

The design of Stampede is aimed at making it easier to program such applications
on such platforms. An equally important goal is portability, to allow flexibility in the
choice of in-kiosk computers, back-end servers, and their interconnection networks.

3 Overview of Stampede

Figure 2 shows an overview of the Stampede programming model. The control model

Space-
Time
Memory

Queues,
Registers,
Tables, ...

High-level distributed
sharing/ communication
abstractions

Low-level distributed
sharing abstractions

Distributed
Shared Objects
(DSO)

Multiple, dynamically created
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Control

Data sharing &
synchronization

(implementations)

Figure 2: Overview of the Stampede cluster programming system

includes an unlimited number of dynamically createdthreads running in an unlimited
number of dynamically createdAddress Spaces. Stampede’s threads are an extension
of POSIX threads for multiple address spaces.

All threads within an address space can share data using ordinary shared memory
(for example, C global static data, malloc’d data,etc.). Threads across all address
spaces can share data using consistentDistributed Shared Objects (DSO), described
in Section 6. DSO is similar to the Midway shared memory system [2], but with a
substantially different programmer interface.

Threads across all address spaces can also share/ communicate data using higher-
level distributed data structures, the most novel of which isSpace-Time Memory (STM),
described in Section 5. STM is particularly useful for managing temporally indexed
collections of data, as found in the analysis hierarchies of the Smart Kiosk. The figure
also illustrates that STM and the other higher-level data structures can be implemented
using DSO, or directly using lower-level “raw” communication mechanisms.

Stampede is currently based entirely on C library calls,i.e., it is implemented as a
run-time system, with calls from standard C. Many aspects of the calls could be sim-
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plified, prettified, hidden completely, or made more robust (with type-checking), by
designing language extensions or a new language. Our initial interest is in proving the
concepts and quickly bringing up the Smart Kiosk application, whose existing com-
ponents are written in C. We have some ideas for high-level descriptions of dynamic
thread and communication structures (such as those in Figure 1) from which we can
automatically compile the actual thread creation and Space-Time Memory calls.

4 Address Spaces and Threads

We chose to make multiple Address Spaces (AS’s) visible to the application program-
mer because we believe that, for our target environment, it is infeasible realistically to
provide the illusion of a single, shared address space. In the Smart Kiosk, for example,
the application may be split between a front-end machine on the kiosk and one or more
back-end servers located in a machine room, and these machines may have different
processors and operating systems. In addition, the Smart Kiosk application contains
a mixture of components, some written in C and some written in Tcl/Tk. The latter
components are not thread-safe, and need to be jacketed in their own address space if
we are to avoid a major porting job.

The number of Address Spaces has no direct correlation with the number of phys-
ical machines or processors in the system. An Address Space must be contained com-
pletely within a single machine (which may be an SMP), and there can be more than
one Address Space on a machine. An Address Space stays on the machine on which
it is created– it cannot migrate. Address spaces may be created dynamically, although
we expect this to be very infrequent (only for dynamically created thread-unsafe com-
putations).

Stampede threads are based on the POSIX “pthreads” model [6]. Execution be-
gins with a single thread at an application-suppliedspd app main(argc,argv) routine.
Through recursive thread creation, an application can create an arbitrary number of
threads. A Stampede thread always runs entirely within an address space, and does
not migrate, once created. Because we are supporting arbitrary C code and libraries,
which can involve pointers into the stack, OS-provided handles,etc., migration would
be extremely difficult and expensive (if not impossible).

Stampede’sspd thread create() call extends POSIX’spthread create() with a
few extra parameters. One of them is an integer that specifies which address space
the child thread should run in. This number can be in the range 0 to(spd num ASs-

1), wherespd num ASs is a Stampede-provided variable equal to the current number of
address spaces. Alternatively, a special wild-card argument allows the Stampede run-
time system to choose one of the existing address spaces for this thread; this choice
may depend, for example, on the current loads on the participating machines. The
semantics of thread creation are the same as in POSIX: the parent thread blocks on the
creation call until the child thread has been created and is ready to run, no matter which
address space it occupies.

Stampede’s argument-passing convention during thread creation differs from the
POSIX model, because the parent and child threads may be on different address spaces.
POSIX thread creation passes only a “one word” argument (coerced to the(void *)



6 5 SPACE-TIME MEMORY

type) from the parent thread to the root function of the child thread. Larger arguments
are passed by reference, by passing a pointer to the real argument in this one word
argument. This is adequate in POSIX since threads occupy a single address space.
We have found that a simple extension subsumes the POSIX system, with very little
intellectual or performance overhead. Stampede thread creation takes an additional
integerarg size parameter. Whenarg size is zero, the usual(void *) parameter is
passed exactly as in POSIX. Whenarg size� �, the(void *) parameter is interpreted
as a pointer toarg size bytes. These bytes are copied to the destination address space,
and the child receives a(void *) pointer to this copy. For uniformity, this copy is
performed even if the child and parent are on the same address space (so, the child
never has to synchronize with the parent to access the copy).

The thread-creation call returns a Stampede thread identifier that is unique across
all address spaces in the application. Thread identifiers may be used for thread control
and synchronization. For example, if a thread A must wait for another thread B to
complete, whether or not they are on the same address space, it can call Stampede’s
analog to POSIX’spthread join(), supplying the Stampede thread identifier for B.

In summary, in order to simplify porting of existing applications to Stampede, we
have sought to retain the POSIX threads model as far as possible, making only the
minimal changes necessary in order to extend it to multiple address spaces.

5 Space-Time Memory

Perhaps the most novel aspect of Stampede is Space-Time Memory (STM), a dis-
tributed data structure that addresses the complex “buffer management” problem that
arises in managing temporally indexed data items as in the Smart Kiosk application. To
recap the description in Section 2, there are four complicating features: streams become
temporally sparser as we move up the analysis hierarchy; threads may not access items
in strict stream order; threads may combine streams using temporal correlation, and
the hierarchy itself is dynamic, involving newly created threads that may re-examine
earlier data.

Traditional data structures such as streams, queues and lists are not sufficiently
expressive to handle these features. In addition to the issue of associating data items
with time, these features also make garbage collection a challenging problem.

Stampede’s Space-Time Memory (STM) is our solution to this problem. The key
construct in STM is theport, which is a location-transparent collection of objects in-
dexed by time. The API has operations dynamically to create a port, and for a thread to
attach anddetach a port. Each attachment is known as aconnection, and a thread may
have multiple connections to the same port. Figure 3 shows an overview of how ports
are used. A thread canput a data item into a portvia a given output connection using
the call:

spd_port_put_item (o_connection, timestamp, buf_p, buf_size, ...)

The item is described by the pointerbuf p and itsbuf size in bytes. A port cannot
have more than one item with the same timestamp, but there is no constraint that items
be put into the port in increasing or contiguous timestamp order. Indeed, to increase
throughput, a module may contain replicated threads that pull items from a common
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Figure 3: Overview of Stampede ports

input port, process them, and put items into a common output port. Depending on the
relative speed of the threads and the particular events they recognize, it may happen
that items are placed into the output port “out of order”. Ports can be created to hold
a bounded or unbounded number of items. Theput call takes an additional flag that
allows it to block or to return immediately with an error code, if a bounded output port
is full.

A thread canget an item from a portvia a given connection using the call:
spd_port_get_item (i_connection, timestamp,

& buf_p, & buf_size,
& timestamp_range, ...);

Thetimestamp can specify a particular value, or it can be a wildcard requesting the
newest/oldest value currently in the port, or the newest value not previously gotten over
any connection,etc.. As in theput call, a flag parameter specifies whether to block if a
suitable item is currently unavailable, or to return immediately with an error code. The
parametersbuf p andbuf size can be used to pass in a buffer to receive the item or,
by passing NULL inbuf p, the application can ask Stampede to allocate a buffer. The
timestamp range parameter returns the timestamp of the item returned, if available; if
unavailable, it returns the timestamps of the “neighboring” available items, if any.

The put andget operations are atomic. Even though a port is a distributed data
structure and multiple threads on multiple address spaces may simultaneously be per-
forming operations on the port, these operations appear to all threads as if they occur
in a particular serial order.

The semantics ofput andget are copy-in and copy-out, respectively. Thus, after
a put, a thread may immediately safely re-use its buffer. Similarly, after a successful
get, a client can safely modify the copy of the object that it received without interfering
with the port or with other threads. Of course, an application can still pass a datum by
reference– it merely passes a reference to the object through STM, instead of the datum
itself. The reference can be a DSO “global pointer” (described in Section 6) or, if the
application exploits knowledge about address spaces, it can even be an ordinary C
pointer.
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Puts and gets, with copying semantics, are of course reminiscent of message-
passing. However, unlike message-passing, these are location-independent operations
on a distributed data structure. These operations are one-sided: there is no “destina-
tion” thread/ process in aput, nor any “source” thread/ process in aget. The abstrac-
tion is one of putting items into and getting items from a temporally ordered collection,
concurrently, not of communicating between processes.

5.1 Garbage Collection in STM

The question of garbage collection of items in ports is difficult, in light of the fact that
a thread mayget andput items sparsely, and even out of order, and the fact that Stam-
pede threads may fork new threads that revisit old data. Stampede imposes rules on
thread times and generation of item timestamps that make garbage collection feasible.

An objectX in a port is in one of three states with respect to each input connection
ic connecting that port to some thread. Initially,X is “unseen”. If the thread performs
aget operation onX over connectionic, thenX is in the “open” state with respect to
ic. Finally, the thread can perform aconsume operation on the object, transitioning it
to the “consumed” state. We also say that an item is “unconsumed” if it is unseen or
open.

Theconsume operation can specify a particular object (i.e., with a particular times-
tamp), or it can specify all objects up to and including a particular timestamp. In the
latter case, some objects will move directly into the consumed state, even though the
thread never performed aget operation on them.

Every thread has a variable called its “virtual time”. At each point in time, each
thread has a “virtual time lower bound”, which is the lesser of:

� its own virtual time, and

� the smallest timestamp of all unconsumed objects in ports to which the thread
has input connections (this number of course may vary as new items are put into
those ports by other threads).

A thread can change its virtual time to any specific value� this lower bound. Alter-
natively, a thread can set its own virtual time to the special value INFINITY, in which
case its virtual time lower bound is determined purely by what is available on its in-
put ports. This strategy is typically adopted by threads that just compute output item
timestamps based on input item timestamps.

When a threadput’s an object into a portvia an output connection, it can spec-
ify any timestamp� its virtual time lower bound (subject, of course, to the normal
restriction that two objects in a port cannot have the same timestamp).

Similarly, when a thread creates a new child thread, the parent can specify the
child’s initial virtual time, using an extra argument in thespd thread create() call
described in Section 4, to any time� the parent’s virtual time lower bound.

These rules transitively imply aglobal lower bound timestamptsmin, which is the
global minimum of:

� virtual times of all the threads, and
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� timestamps of all unconsumed items on all input connections of all ports.

It is impossible for any current thread, or any subsequently created thread, ever to refer
to an object with timestamp� tsmin. Thus, all objects in all ports with lower times-
tamps can safely be garbage collected. Stampede’s runtime system has a distributed
algorithm that periodically recomputes this value and garbage collects dead items.

Although this general-purpose global lower-bound computation eventually picks
up all garbage in all ports, there is a common case that accelerates garbage collection.
Frequently, a producer thread knows exactly how many consumer threads will consume
each item (which may be different from the number of input connections to the port).
This information can be passed to Stampede in the form of an additionalreference
count parameter in theput call. As soon as that item has been consumed the requisite
number of times, Stampede can garbage collect it immediately.

The copy-in/copy-out semantics allows Stampede to reclaimall the space used
internally in ports. However, since an item passed through STM may contain references
to other application data structures that are unknown to Stampede, Stampede invokes
a user-supplied cleanup handler before finally disposing of the item. This “upcall” is
always done in the context of the thread that originallyput that item into the port (it is
piggy-backed on to other Stampede calls performed by that thread), because that thread
is best suited to interpret the contents of the item.

5.2 Communicating Complex Data Structures through STM

Theput andget mechanisms described above are adequate for communicating con-
tiguously allocated objects through ports, but what about linked data structures? In the
Smart Kiosk, for example, an image data structure consists of one object containing
the pixel data, and a chain of dynamically computed “image attribute objects” attached
to the main object using C pointers; however, an image and its attributes are, conceptu-
ally, a single unit that we wish to communicate through an STM port. The C pointers
are of course meaningless in a different address space.

To solve this, Stampede extends the basic STM system with a notion of “object
types”. The following call:

spd_dcl_type (type, flatten_method, unflatten_method, ...)

declares a new object type (represented by an integer), and associates with it a set of
methods, or procedures. Two of these are for flattening and unflattening objects of this
type into a contiguous sequence of bytes for transmission between address spaces.

A variant of the portput call takes a pointer to the data structure, as before, but it
now takes the type as a parameter instead of the object size (which is not particularly
meaningful for a linked data structure). Similarly, a variant of theget call now returns
a pointer to the linked data structure, and its type. Figure 4 shows an overview of how
these facilities are used. Stampede takes care of the flattening, communication and
unflattening necessary to reconstitute the linked data structure for the consumer. These
actions are done lazily,i.e., only when a consumer actually attempts toget an item, and
the flattened bits are cached and communicated at most once between any two address
spaces. The normal garbage collection process, described in the previous section, also
recycles buffers containing flattened bits.



10 6 CLUSTER-WIDE DISTRIBUTED SHARED OBJECTS (DSO)

STM
port

put (conn, ts, item, type) item, type := get (conn, ts)

consume (conn, ts)

thread thread

Figure 4: Communicating complex objects through ports, based on “types”

If we implemented Stampede in a language with a richer type system, the appli-
cation programmer could be relieved of the burden of specifying flatten and unflatten
methods (similar to the “serializer” mechanisms in Java). However, even in this case,
it would be useful to have the ability to override these default methods. For example,
image data structures in the Smart Kiosk application include a linked list of attributes
which can, in fact, be recomputed from the object during unflattening, and so do not
need to be transmitted at all. Further, the image data itself can be compressed during
flattening and decompressed during unflattening. Such application- and type-specific
generalizations of “flattening” and “unflattening” cannot be provided automatically in
the default methods.

5.3 Synchronizing with real time

The “virtual time” and “timestamps” described above with respect to STM are merely
an indexing system for data items, and do not have any direct connection with real time.
For pacing a thread relative to real time, Stampede provides an API for loose temporal
synchrony that is borrowed from the Beehive system [13]. Essentially, a thread can
declare real time “ticks” at which it will re-synchronize with real time, along with
a tolerance and an exception handler. As the thread executes, after each “tick”, it
performs a Stampede call attempting to synchronize with real time. If it is early, the
thread waits until that synchrony is achieved. It if is late by more than the specified
tolerance, Stampede calls the thread’s registered exception handler which can attempt
to recover from this slippage.

Using these mechanisms, for example, a thread in the Smart Kiosk at the bottom of
the analysis hierarchy can pace itself to grab images from a camera and put them into
an output port at 30 frames per second, using absolute frame numbers as timestamps.

6 Cluster-wide Distributed Shared Objects (DSO)

Space-Time Memory is well suited for managing temporally indexed collections of
data that are processed in a pipeline manner. But what about ordinary, shared, updat-
able data? Stampede provides a lower-level, “shared memory-like” mechanism called
Distributed Shared Objects (DSO). This mechanism is borrowed from our earlier work
on Cid [8], and is also closely related to the Midway shared memory system [2].
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gp = make_global (p, size)ASi

thread_create (fn, gp, ASm)

p' = get (gp, R/W)

... = ... p'-> ...

p'-> = ...

release (gp)

fn (gp)
ASj

ASk

Figure 5: Overview of Stampede’s Distributed Shared Objects (DSO)

Figure 5 shows an overview of DSO usage. First, a thread dynamically declares an
object as a global object using the call:

spd_dso_gptr gp; void *p; int size;

gp = spd_dso_make_global (p, size);

The returned valuegp is an application-wide unique identifier for the object. Once
declared global, all threads (including the thread that declared it global) must only
access the object betweenget andrelease calls:

spd_dso_get (gp, mode, & p’, & size, ...);

... arbitrary code to manipulate the object using p’-> ...

spd_dso_release (gp, ...);

In the get call, the thread specifies the desired object usinggp, and the desired
accessmode in which to obtain the object, such asREAD (shared) orWRITE (exclusive).
The get call returns an ordinary C pointer to the object (p’) and the object’s size.
The Stampede runtime system implements, in software, a roving-owner consistency
protocol to implement the access mode semantics. Each address space contains at
most one copy of the object (shared by all threads in that address space).

How does a thread “know” about a global object that may have been created by
another thread? The base mechanism is that agp may be passed as an argument during
thread creation. Then, inductively, an object may contain othergptr’s as fields.

This is a different programming interface from the Midway system, with which it
shares the idea that synchronization is associated with specific shared data. Midway
has the traditional notions of locks and data, and the application program makes explicit
calls to associate a lock with the data that it guards. This association is exploited in the
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consistency protocol to decide exactly what data needs to be moved to a processor that
acquires a lock to enter a critical section (Midway calls this “entry consistency”). In
Stampede’s DSO, there is no separate notion of locks. Instead, the programmer directly
thinks in terms of shared objects, to which a thread at various times has exclusive,
shared, or no access. Unlike flat transparent shared memory systems, DSO does not
perform a “check-for-miss” or global-to-local address translation on every memory
reference; essentially, this is done once, during theget call, which transforms the
global namegp to a local namep’. Subsequent accesses to the object, prior to the
release call, are just ordinary pointer dereferences, at full speed. The actual addresses
p’ at which an object is replicated by the protocol may vary across differentget’s.
This also makes it easy for the object manager on an address space to evict objects
that are not currently in use, and to reuse the freed storage for other objects. When
the application no longer needs a DSO objectgp, it can callspd dso free(gp) on any
address space; the protocol consistently frees all replicas and calls a user-supplied free()
routine on the address space where it was originally made global.

In addition to the usualREAD andWRITE modes, Stampede’s DSO design includes
other modes such asRECENT COPY, PRODUCER andCONSUMER. The former is useful when
the application is resilient to accessing a perhaps stale (but consistent) copy of the ob-
ject, and the latter modes are useful when two threads access an object in the producer-
consumer idiom.

Stampede also has an asynchronous variant of theget call. This can be used to
“prefetch” an object and also to initiate concurrentget’s for multiple objects, instead
of obtaining them serially. The constructs for these split-phase transactions originated
in dataflow languages [1], and were subsequently used in languages like Split-C [4]
and Cid [8].

Finally, DSO also supports the distributed sharing of linked data structures, just like
the system described for STM in Section 5.2, using type-specific flatten and unflatten
methods. These methods are called automatically, and lazily, by the consistent replica-
tion protocol. The cacheing and management of the buffers for the flattened bits for an
object are a little more complicated in DSO than in STM because of their different se-
mantics: STM has copy-in/ copy-out semantics, whereas DSO objects are truly shared
and updatable.

The Stampede application programmer has a spectrum of choices in making a
linked data structure available cluster-wide. At one extreme, he can have the the en-
tire data structure moveden masse by hooking flatten and unflatten methods into the
consistent object replication protocol. At the other extreme he can replace every C
pointer by agptr, and access individual elements of the data structure across the clus-
ter at a fine grain. Or, in between, he can defineregions of the data structure that are
to be treated as single units, usinggptr’s to link between regions, and providing flat-
ten/unflatten methods to have regions moved as units. The choice, on this spectrum, is
clearly going to depend on the application.
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7 Status and Plans

Essentially all the features of Stampede described above have been implemented for
clusters as of April 1998. The only pieces still missing are dynamic creation of ad-
dress spaces, and the non-standard sharing modes in DSO:RECENT COPY, PRODUCER,
CONSUMER, etc. We are currently able to run, on a cluster, an early prototype of the
compute-intensive vision component of the Smart Kiosk, using color models to track
multiple targets in front of a single camera.

Earlier, this color-based tracking application and an image-based rendering appli-
cation exhibited good performance and speedups on a single SMP version of Stampede.
Experimental results and pseudo-code can be found in [12].

Stampede is implemented as a C library under Digital Unix. Our main back-end
compute server is a cluster of four AlphaServer 4100’s, each being an SMP with four
400 MHz Alpha processors and 1.5 GB main memory. The SMPs are interconnected
with Digital’s Memory Channel, Myricom’s Myrinet, and an 100 Mb/s FDDI ring.
Memory Channel is an extremely low-latency “protected remote write” cluster inter-
connect [5]. Stampede runs on each of these, and indeed runs on any mix of Alpha
Digital Unix workstations and SMPs, resorting to UDP sockets when no better inter-
connect is available. The Stampede system uses CRL’s CLF substrate [9] which pro-
vides basic cluster services such as process startup and standard I/O, debugging, and
high-speed communication. We cannot yet run on different processor architectures and
operating systems, but we do have near-term plans to port it to Windows NT on Alpha
and x86 machines.

On an experimental basis, Stampede also incorporates the Cashmere Distributed
Shared Memory (DSM) system [7] as an alternative to DSO for ordinary shared data.
While the rest of Stampede is very portable (it can even work on workstations over
UDP sockets), Cashmere is quite closely tied to Digital’s Memory Channel. Thus, we
view this as an experimental feature to allow us to compare the costs of data-sharing
over DSM and DSO. If DSM is found to be a valuable component of Stampede, we can
consider either porting Cashmere to be independent of Memory Channel, or replacing
it with some other portable DSM system.

We also have three separate implementations of Space-Time Memory (STM): on
top of Cashmere, on top of DSO, and a direct implementation using CLF messaging.
Again, this is an experimental setup to allow us to compare the costs of communication
and sharing in these three implementations.

In the coming months, we expect to make the system more robust, and then to
conduct performance studies to understand the behavior of the system under various
choices: the relative performance of Space-Time Memory over its three implementa-
tions; the relative performance of ordinary data sharing over DSO and DSM; the effects
of thread placement,etc. We will of course be tuning and optimizing the implementa-
tion continuously.

A related project already underway is to study the integration of dynamic task and
data parallelism in Stampede [10]. Many opportunities for data parallelism exist in the
Smart Kiosk. For example, images can be partitioned into regions and processed by
parallel threads, with each thread looking for all color models in a region. Alternatively,
the color models can be partitioned, with each thread looking at entire images for a
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single color model. Stampede currently has task parallelism only (thread creation),
but it is sufficiently flexible to enable manual construction of data parallel structures.
However, the book-keeping necessary to split datasets into data parallel chunks and
then to recombine the results, can be quite onerous. We have many ideas for higher-
level support for data parallelism, but first we intend to conduct some experiments
using manually constructed data parallelism to understand where it is most effective.

Further out, we will also be expanding the application on Stampede from the cur-
rent one-camera vision algorithm towards a full Smart Kiosk system, including stereo
vision, more sophisticated vision algorithms, speech recognition and other sensor tech-
nologies. As this evolution happens, we expect Stampede’s focus to shift towards issues
of dynamic thread creation, load balancing,etc.

8 Conclusion

There is an emerging class of “smart” applications that monitor a variety of sensors;
perform sophisticated, computationally demanding “recognition” algorithms involving
individual sensors and combined information from multiple sensors; and, have real-
time constraints in that they must react to events in the real-world. The platforms for
these applications may combine low power front-end machines together with powerful
back-end servers. We have described one such application, CRL’s Smart Kiosk, but the
description could equally well fit robots, autonomously navigating vehicles, interactive
animation for entertainment and training,etc.

We have described Stampede, a portable programming system for such applica-
tions and platforms, that we are building at CRL. Stampede has dynamic threads that
can share data uniformly across multiple distributed address spaces. A key novel fea-
ture of Stampede is Space-Time Memory, which permits these applications easily to
manage time-sensitive data in the presence of real-time constraints and dynamic thread
structure.
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